skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Beikbabaei, Milad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 100% inverter-based renewable units are becoming more prevalent, introducing new challenges in the protection of microgrids that incorporate these resources. This is particularly due to low fault currents and bidirectional flows. Previous work has studied the protection of microgrids with high penetration of inverter-interfaced distributed generators; however, very few have studied the protection of a 100% inverter-based microgrid. This work proposes machine learning (ML)–based protection solutions using local electrical measurements that consider implementation challenges and effectively combine short-circuit fault detection and type identification. A decision tree method is used to analyze a wide range of fault scenarios. PSCAD/EMTDC simulation environment is used to create a dataset for training and testing the proposed method. The effectiveness of the proposed methods is examined under seven distinct fault types, each featuring varying fault resistance, in a 100% inverter-based microgrid consisting of four inverters. 
    more » « less